Estimating high-dimensional directed acyclic graphs with the PC-algorithm

Markus Kalisch

Seminar für Statistik, ETH Zürich, Switzerland
Overview

1. DAG and its skeleton
2. PC-algorithm
3. Consistency
4. Simulation
5. Application
Directed Acyclic Graphs (DAGs)

- Nodes: Random Variables
- Edges: Some Dependence
- Recursive factorization:
 \[f(GM, C, S) = f(GM)f(C|GM)f(S|GM) \]
- We assume Multivariate Normal Distribution
Directed Global Markov Property

- DAG implies conditional independence relations
- $C \perp S \mid GM \iff C, S$ are separated by GM in
 \[
 (G_{\text{An}}(C \cup S \cup GM))^m
 \]
Conditional independence relations implied by DAG

= Conditional independence relations of distribution
Skeleton of a DAG

- Ignore directions of arrows
- Edge between two nodes A and $B \iff A, B$ are dependent given every subset of remaining nodes
The PC-algorithm for finding a DAG

Finding the skeleton:
Form complete graph G
$l = -1$
repeat
 $l = l + 1$
 repeat
 select (new) ordered pair of adjacent nodes A, B in G
 select (new) neighborhood N of A with size l (if possible)
 if A, B are cond. indep. given N
 save N in N
 delete edge A, B in G
 until all ordered pairs have been tested
until all neighborhoods are of size smaller than l

Finding the DAG: The skeleton can be directed using N and four simple rules.

Markus Kalisch, ETH Zürich
Estimating DAGs with the PC-algorithm
Real World: Cond. Indep. Relations $A \perp B \mid S$ are not known

Instead: Test for partial correlation $\rho_{AB \mid S} = 0$ (due to Gaussian assumption)

Therefore:
Remove edge if test for $\rho_{AB \mid S} = 0$ cannot be rejected for some S on level α.
Consistency: Assumptions

\(n \): Number of samples, \(p \): Number of nodes

- Multivariate Normality, Faithfulness
- Nodes: \(p_n = O(n^a) \), \(0 \leq a < \infty \) (high-dimensional)
- Max number of neighbors is \(O(n^{1-b}) \), \(0 < b \leq 1 \) (sparse)
- Bounded partial correlations (\(0 < d < \frac{b}{2} \)):
 \[
 \inf \{|\rho_{ij|k}|; \rho_{ij|k} \neq 0\} \geq c_n, \ c_n^{-1} = O(n^d) \) (larger than \(\frac{1}{\sqrt{n}} \))
 \[
 \sup \{|\rho_{ij|k}|\} \leq M < 1
 \]
Under these assumptions:

There exists some $\alpha_n \to 0 \ (n \to \infty)$ so that

\[P(\text{estimated DAG} = \text{true DAG}) = 1 - O(\exp(-Cn^{1-2d})) \to 1 \]

$(n \to \infty)$ for $0 < C < \infty$
Choice of α

- Structural Hamming Distance (SHD) measures distance between estimated and true graph.
- Over a wide range of parameters the average SHD is minimized for significance levels between $\alpha = 0.005$ and $\alpha = 0.001$.
- In practice: Either choose default values for α or generate priority list of edges.

![Graph showing the average SHD against log10(alpha)]
Performance

Computing Time: \(p = 1000, n = 1000, E[N] = 8 \rightarrow t \sim 1h \)

Estimation:
- Number of variables \(p \) increases exponentially
- Number of samples \(n \) increases linearly
- Expected size of neighborhood \(E[N] = \sqrt{n} \) increases sublinearly

Then: TPR increases, FPR decreases
Production of Riboflavin (Vitamin B_2) in Bacillus Subtilis

- **Goal:** Maximize output of Riboflavin Y by manipulating genes
- Data obtained by Affymetrix B. subtilis GeneChips from DSM Nutritional Products
- Number of Variables $p = 4088$, number of samples $n = 50$

Which genes have an influence on Y?
Result

- Small number of stable candidates extracted
- They are a subset of genes found with other techniques (Lasso, Elastic Net, . . .)
- Findings promising from a biological point of view
- Experimental testing in progress
Conclusion

- DAG, Skeleton, Dependence
- PC-algorithm finds true DAG/skeleton consistently (under some assumptions)
- PC-algorithm is fast for sparse graphs
- More information:
 M. Kalisch and P. Bühlmann
 Estimating High-Dimensional Directed Acyclic Graphs with the PC-algorithm
 JMLR 8 (2007)
- R-package `pcalg` for the PC-algorithm (including robust version)